Bodyweight Assessment of Enamelin Null Mice
نویسندگان
چکیده
The Enam null mice appear to be smaller than wild-type mice, which prompted the hypothesis that enamel defects negatively influence nutritional intake and bodyweight gain (BWG). We compared the BWG of Enam(-/-) and wild-type mice from birth (D0) to Day 42 (D42). Wild-type (WT) and Enam(-/-) (N) mice were given either hard chow (HC) or soft chow (SC). Four experimental groups were studied: WTHC, WTSC, NHC, and NSC. The mother's bodyweight (DBW) and the average litter bodyweight (ALBW) were obtained from D0 to D21. After D21, the pups were separated from the mother and provided the same type of food. Litter bodyweights were measured until D42. ALBW was compared at 7-day intervals using one-way ANOVA, while the influence of DBW on ALBW was analyzed by mixed-model analyses. The ALBW of Enam(-/-) mice maintained on hard chow (NHC) was significantly lower than the two WT groups at D21 and the differences persisted into young adulthood. The ALBW of Enam(-/-) mice maintained on soft chow (NSC) trended lower, but was not significantly different than that of the WT groups. We conclude that genotype, which affects enamel integrity, and food hardness influence bodyweight gain in postnatal and young adult mice.
منابع مشابه
Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin.
Although the nonamelogenin proteins, ameloblastin and enamelin, are both low-abundance and rapidly degrading components of forming enamel, they seem to serve essential developmental functions, as suggested by findings that an enamel layer fails to appear on teeth of mice genetically engineered to produce either a truncated form of ameloblastin (exons 5 and 6 deleted) or no enamelin at all (null...
متن کاملEnamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation
Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized ...
متن کاملRelationships between protein and mineral during enamel development in normal and genetically altered mice.
The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles an...
متن کاملPhenotype-Genotype Correlations in Mouse Models of Amelogenesis Imperfecta Caused by Amelx and Enam Mutations
Mutations in human and in mouse orthologous genes Amelx and Enam result in a diverse range of enamel defects. In this study we aimed to investigate the phenotype-genotype correlation between the mutants and the wild-type controls in mouse models of amelogenesis imperfecta using novel measurement approaches. Ten hemi-mandibles and incisors were dissected from each group of Amelx(WT), Amelx(X/Y64...
متن کاملDental Enamel Development: Proteinases and Their Enamel Matrix Substrates
This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013